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50009 Zaragoza, Spain 
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Abstract. The Hamiltonian formalism for time-dependent systems is developed using vector 
fields defined in the extended cotangent bundle T * ( Q x R ) .  The extended Hamiltonian H 
is obtained using the extended Legendre transformation associated to an extended 
Lagrangian L previously defined in T ( Q x R )  and then the techniques of symplectic 
mechanics are employed in T * ( Q x R )  to study the properties of the extended Hamiltonian 
system. Finally this approach is related with the multisymplectic formalism and other 
extended approaches. 

1. Introduction 

The theory of Hamiltonian dynamical systems on symplectic manifolds (M, o) has 
been shown [ 1,2,3] to be the appropriate geometric setting for the study of autonomous 
systems in both the Hamiltonian and Lagrangian approaches. In the first case the 
symplectic manifold is (T*Q, wo)  where T*Q denotes the cotangent bundle of the 
configuration space Q and on the canonical structure of T*Q; in the second case 
(M, o) is (TQ, w L )  where TQ is the tangent bundle of Q and oL is constructed from 
the Lagrangian L by means of the vertical endomorphism [3-51. Both formalisms are 

non-singular, a one-to-one relationship between them. 
If the system is time-dependent then the Lagrangian velocity phase space is 

geometrically represented [ I ,  21 by TQ x R and the momentum phase space by T*Q x W. 
These two manifolds are odd-dimensional and, therefore, they do not admit symplectic 
structures. Because of this, the symplectic formalism so successfully used for the study 

other geometric formalisms. The approach most often used is the contact (co- 
symplectic) formalism [ l, 21 in manifolds of the form M x R with M symplectic. Other 
structures also used are: vector fields along a map [6], homogeneous and extended 
formalisms [7-IO], multisymplectic formalism [ 11- IS] and other related matters (see 
[I61 and references therein). 

In sumi the time-dependent geometric formalism seems to be not so straightforward 
as the time-independent is, and, although its basic foundations are considered to be 
clearly stated, some properties that are considered to be well known for the time- 
independent case (Newtonoid vector fields, Legendre transformation, symmetries and 
Noether's theorem, Poisson brackets, etc) continue to  be studied for the time-dependent 
case (see, for example, [17-221 for some recent papers). Moreover, one additional 
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reason for the study of time-dependent systems is the idea that the geometric formalism 
of field theories is more closely related to time-dependent classical mechanics than to 
the autonomous one. 

The extended formalism considers [7-91 not Q hut the space of events Q x R as 
the configuration space. In this way the new phase spaces, that tum out to he T(  Q X R )  
and T*( Q x R), are even-dimensional and, therefore, suitable for admitting symplectic 
two-forms. In sum, the extended formalism substitutes a given time-dependent system 
of n degrees of freedom by an associate time-independent system of n + 1 degrees of 
freedom. 

The Hamiltonian dynamics can he presented mainly using two ways: (i) directly 
in the cotangent bundle, (ii) making use of the Legendre transformation. In the first 
case the Hamiltonian function H is directly given and in the second case H is obtained 
from a previously defined Lagrangian L. In the case of the extended cotangent bundle 
formalism the two approaches have been considered: thus the extended Hamiltonian 
W can be (i) directly constructed in T*(Q x R) [8,9] from a time-dependent Hamiltonian 
H defined in T*Q x R, or (ii) be obtained by means of the homogeneous formalism 
[7,10]. The homogeneous Lagrangian Lh of L, that is.singular in T ( Q x  W), is 'almost 
regular' according to the terminology of Gotay and Nester [23] and of type 11 [24]. 
More concretely, the kernel of its associate presymplectic two-form 0: is two- 
dimensional [25]  with a one-dimensional vertical part Ker(w:) U V[ T(  Q x R)] gener- 
ated by the extended Liouville vector field A .  In sum, Lh is singular but it can be 
perfectly studied using the properties of the presymplectic geometry and it has the 
worth of leading to a Hamiltonian formalism in T * ( Q x W )  by means of a Legendre 
transformation from r(Q xR) t o  T*(Q x R). 

The purpose of the present paper is present a different approach. We shall study 
an extended Legendre transformation and the construction of its associate extended 
Hamiltonian system inside the setting of non-singular systems. The starting point for 
the first part of the paper is the study of an extended Lagrangian function L(L) [26] 
associated to the time-dependent function L; nevertheless, we will see that unfortu- 
nately, L(L) is not regular in the whole T ( Q x R )  hut it presents some singularities. 

In section 2 we present the main properties of L(L) and then in section 3 the 
Legendre map D, and the extended Hamiltonian function R I  are studied. The remainder 
of the paper discusses the particular case of the mechanical type systems, the relation 
of this approach with the multisymplectic formalism and other extended approaches. 

2. Lagrangian extended formalism 

Let Q'= Q x R  be the new configuration space [7-lo]; then the time f will appear as 
a new coordinate, q"+' = t, and the dynamics will he represented by the flow of vector 
fields defined in TQ'= (74 x R) x R. We will denote by f i  the projection p :  TQ'+ 
TQ x R and by s the parameter of the integral curves; finally the indexes i, j . .  . will 
continue running from 1 to n, but a, b . .  . will run from 1 to n t 1. 

Definition 2.1. Let Q he a manifold and L : TQ x R + R he a time-dependent regular 
Lagrangian. Then the function L( L )  : TQ'+ W defined by 

L(L) = p*(L)-f i*(&)(u"+'-  1) 

is called extended Lagrangian associated to L. 
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If there is no danger of confusion L(L) will be written as L; also in order to simplify 
the formulae we will omit the p*-notation for the U"+'-independent functions and 
write just L, Er,  etc. 

The main properties [26] of 0 are: 
(1) L is defined in a tangent bundle and, consequently, it must be considered as a 

time-independent Lagrangian. Because of this the obtaining of its associate Lagrangian 
dvnamical svstem must be done bv usine the two basic obiects of the tangent bundle - - 
geometry: [3-51 the Liouville vector field A'E E( TQ') and the vertical endomorphism 
S' : N TO') + 23 TO'). 

\-. , \-. , - . ~. 

(2) The dynamics is then given by the flow of the Euler-Lagrange vector field X, 
defined as the solution of the Hamiltonian-like equation 

i(W,)q = dEL 

where the symplectic form wL and the energy function E, are defined by 

W ,  = -d& 0, = S'*(dL) E,=A(O)-L. 

Nevertheless the determinant W of the Hessian matrix [a2L/av"aub] is not constant 
on TQ' but a velocity-dependent function that takes the form 

when L is quadratic. Therefore the two-form wL is symplectic in TQ' up to the points 
where W vanishes and, because of this, the vector field X, is not defined in the whole 
TQ' but in the open submanifold (TO'), = TQ'\SQ' obtained by removing the singular 
points SQ'.  Except for this, X, is a second-order differential equation (SODE) field, i.e. 
S'(X,) =A', with a coordinate expression of the form 

X,=v",fFY(q a b b a  , U  )- 
aq all" ' 

(3) The equation U"+' = 1 defines a ( n  + 1)-dimensional submanifold M = 
Q'x R" x { 1) which is an affine subbundle of TQ' trivially diffeomorphic to TQ x IR. 
XL is tangent to M and its restriction X, = XLIM E 2 ( M )  takes the form 

where F,(q, c, 1 )  are the functions 

aL a=L a2L 
' aq' aq*avj atav' 

F . = - - -  v -7 

and [ Wkj ]  is the inverse matrix of [ W,]. Thus, X,, that is a SODE field in TQ x R 

a 
S'(X,)=O S'=(dq'-V' dt)O, 

d V  

i(X,) d t  = 1 

turns out to be the suspension [ l ,  21 of a time-dependent vector field in TQ, it agrees 
with the vector field obtained in the contact formalism and its integral curves satisfy 
the (time-dependent) Euler-Lagrange equations. 

(4) The association L+ U( L )  is natural with respect to gauge transformations. 
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Summarizing these properties, the Lagrangian introduced in the above definition 
2.1 leads to a Lagrangian formalism in which the time t is not treated as a distinguished 
coordinate and the dynamics is described using the tools of the symplectic tangent 
bundle geometry. The relation with other best known geometric formalisms is given 
by the pull-back to the submanifold M, that is, when considering the pull-back to M 
of the 'time-independent' formalism constructed over L(L) we recover the 'time- 
dependent' contact formalism constructed directly over L. 

Unfortunately the carrier space of U, is not the whole TQ'but the open submanifold 
( T Q ) l c  TQ'. The presence of these singularities represents, no doubt, the most 
troublesome problem of this extended approach. Later, when we study the mechanical 
type systems, we will reconsider this question more closely. 

3. Hamiltonian extended formalism 

The Hamiltonian extended formalism uses as momentum phase space the cotangent 
bundle T*Q'- (T*Q x W) x W*; we will denote by U the projection U :  T*Q'+ T*Q x R. 

T * Q  carries, as a consequence of its cotangent structure, a natural or canonical 
one-form 0, whose exterior derivative gives the symplectic structure 

= -d00 0, = p i  dq'+  u dt 

where U denotes the new momentum, i.e. U = p n + ,  . 
In the following DL will denote the Legendre transformation DL: T Q  + T*Q', (4'. 

t, U', unt')+(qi, t, pi. U), associated with the extended Lagrangian L(L) .  Notice that 
D, is a map that, although defined in TQ', the domain in which it is a diffeomorphism 
is given by the aforementioned region obtained by removing the points on which wL 
is not symplectic. So, from now on, any reference to the diffeomorphic character of 
this Legendre map is intended to  be referred to such open submanifold and to its 
image in T * Q .  

The image N = D L ( M )  of M by the Legendre transformation is a submanfold of 
T*Q'. We will denote by i, the natural injection i,: N +  T*Q'. 

Proposition 3.1. Let W be the Hamiltonian function W = D,.(E,) obtained from L and 
N be defined by N = D,(M). Then 

i*,(W) = 0 

Proof Since the Legendre transformation DL is a diffeomorphism, we have 

D,. = (D;')* 

therefore 

i*,(W) = i*,(DL.(EL)) 

=i*,o(D;')*(E,). 

Let D,, denote the restriction of the Legendre transformation D, to the submanifold 
M ;  then D,, satisfies D,oi, =i,.D,,. Because of this we obtain 

I * ' *  %(W = (De,) D l ~ ( E d .  
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The energy EL takes the form 

Thus 

i*,(E,)=O 

and hence we obtain 

i*,(W) = 0. 0 

Proposition 3.2. The restriction rHIN of the Hamiltonian vector field rH to the submani- 
LUL" 1" "I7IIIIS" uy I*  = "l\'". , Lb d. VeCtOr UGlU , d , , ~ G I , t  tu 'Y. 

Proof: The equation i(r,)n,=dW determines a Hamiltonian system; then if eER is a 
regular value of W (i.e. dW(n) # 0 if n E W'(e)) the subset S. = W'(e) is a submanifold 
of T*Q' of codimension 1 and, by conservation of 04, integral curves of rH starting in 
S, will stay in Se. The submanifold N can be characterized as being the hypersurface 

0 

The submanifold N = & ( M )  turns out to  be a regular energy surface of the 
Hamiltonian system and, because of this, the pair {N.i%(R,,)} is a contact manifold. 
Theproofisasfollows: (i) i%(n,) isclosedsincenoisclosedandd[i*,(no)] =i*,[d(n,)], 
(ii) i*N(n,) has maximal rank since no is non-degenerate and N is of codimension one. 

The submanifold N is of dimension 2n  + 1 and it can be represented by the equation 
u"+*(q, I, p, U )  = 1 which, locally by the implicit function theorem, can be solved for 
U = P " + ~  and rewritten as U = u(qx,  f ,  p k ) .  This function, u(qk,  t, pk), represents the 
coordinate expression of -(DL.(EL))lN and it will be denoted by the -H(qk,f,pk). 
Considered as a function defined in T* Q' it is u-basic and, therefore [ 1,2], it determines 
a contact form oH in T*Q x W; we will denote by nH the pull-back of wH to N. 

Proposirion 3.3. Let W be the Hamiltonian function W = D,.(E,) and N defined by 
N =  D L ( M ) .  Then 

c-,> L, >-C--.t L.. ?._ r l  I * , \  :- - c-11 .---.-I I_ X I  

W'(0); hence it follows that rHINE % ( N ) .  

i*,(no)=OH. 

Proof: The canonical one-form Oo is 

O o = p ,  dq'+u df 

therefore 

i%(@,)=i*,(p, dq')+i*,(u dt) 

=pt d q ' - H  dt. 

As a consequence of this we obtain 

i*N(n0)=nH. 
Notice that although it seems that the submanifolds M and N represent similar 

roles in T( Q x W) and T*(Q x R) respectively, they are characterized by very different 
properties. M- is independent oit'he dynamics, that is, it is the same for aii the extended 
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Lagrangians L(L) .  Nevertheless N is dynamical-dependent submanifold, that is, every 
Hamiltonian function W determines its own submanfold N. Notice also that N can be 
represented as the graph of a section of the bundle Y :  T*Q'-t T*Qx W. Thus, the 
time-dependent Hamiltonian H = H ( 9 * ,  t, P k )  is obtained as the coordinate representa- 
tion of the section of Y (i.e. we identify [6] C"( T*Q x R) and r( U)) associated with 
the zero-level surface of W. 

Since rH is tangent to N its restriction rHIN is a characteristic vector field of iL(n,), 
i.e. i(rHIN)[i%(ao)] =O. 

Let us consider a new (extended) Hamiltonian function W ' E  C"( T*Q') defined 
[7-101 by 

W ' = H ( q , p ,  t ) + u  

it determines a new vector field r h E  E( T * Q )  by the equation 

i(rh)Cio= dW'. 

The constant value surfaces for W', S: = W'-'(r), are invariant manifolds for rh; thus, 
if i, represents the natural injection i,: Si+ T*Q', {Si, iT(n0), r e  W) are contact mani- 
folds. Moreover the restriction of rL to Si  is a characteristic vector field of iT(n,). 

The crucial point is that N, previously characterized as N = W-'(O), turns out to 
be also N=W'-'(O). Therefore both vector fields, rWlN and rh,,, are characteristic 
vector fields of the same two-form RH =i%(n,) 

i ( r H I w W H  = o  
i(rLlN)nH = O .  

Consequently rMIN and r;, must be proportional, i.e rHIN =frLIN, f~ C"(N) .  We 
will prove that they are really the same vector field. The proof is as follows: since 
W'=H(9, t , p ) + u ,  rL takes the form 

aH a J J H  a d H  a 
apt aqk at a9' apk at J U  

r:, = _  -+--- - 

and therefore (dt, rh)= 1 not only in N but in all T*Q'. Concerning rMlN we have 

( d t , r H I N ) = i % ( E )  ='* l N ( U " + ' ) ' l .  

T h u s f = l  and rHIN=r;llN. 
On N; the dynamics generated by W is given by the flow of r,l,v (or rhl,%,) that it 

is represented by the set of equations 

d JH 
- U  =-, d 

- t = 1  
dS ds J i  

Notice that rH and are different vector fields and, therfore, they take different 
values in T * Q ,  rH#rh, and determine different flows. They only coincide on the 
submanifold N and not in other hypersurfaces corresponding to any other non-zero 
constant value of the Hamiltonians. 
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The restriction uN of U to N is a contact isomorphism between the contact manifolds 
{N,CLHl and {T*QxW,o , } .  The projected vector field u N . ( r w l N ) ,  that is the unique 
characteristic vector field of oH satisfying 

turns out to be the suspension [ 1,2] u N * ( r H I N )  = 2, to T*Q xlR of the time-dependent 
vector field 

(dt, VN*(rHI,v))= 1 

JH J JH J x ------ 
Jpi Jq '  Jq' Jpi H -  

defined in T*Q. 
These results have been obtained for Hamiltonians associated to arbitrary regular 

Lagrangians LE C"[ TQ xR).  Let us study now the case of an standard Lagrangian of 
mechanical type 

L(q, U, f )= tg ,u 'uJ-  v 

s, = gdq, I )  

where 

v =  V(q, t ) .  

The functions g, can be considered as the coefficients of a time-dependent Riemannian 
metric on the n-diemsnional manifold Q. Notice that the Hessian matrix W, whose 
entries are the second derivatives of L with respect to the n velocities U', i = 1, .  . . , n, 
is g,; consequently Lagrangians of this type are regular. 

The extended Lagrangian Q(L) is 
. .  

L(q", u')=fg,u'IJ'- v-(:g,IJ'uJ+ V)(u"+'- l )  

therefore the one-form and the energy function Et take the form 

=-g,u'uJ(un+l- 1) 

and the momenta are 

JL 
pk =z= g.,u'(2- U"+') 

The Hessian W is W=guu'uJ (u"+'-2), therefore B has two singularities: the points 
where the (n-dimensional) kinetic energy is null, g,o'v' = 0, and un+l = 2. Notice that, 
although they appear as clearly different, both singularities have the common property 
of being the points of TQ' where the function L (that is cubic) reduce to the linear 
term Q= -V(q, t)u"". In geometric terms the singularities of Q are SQ'=  S'Q'u S'Q' 
with 

S'Q'= us;,,, 
- S'Q'=l-l S& 

S;,,)={(ui, u n + l ) €  T(,,)Q'lU'=. . . = u " = 0 )  

S&) = {(d: U'+l) E T,,:)O'!o"+' =2!. 
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Note that these singularities affect only the fibres (i.e. to the velocities) and do  not 
restrict the configuration space Q'. It can be proved that S'Q' is a singularity for the 
function U"+' but not for the F k s  and, conversely, S2Q' is singularity for the F k s  but 

1) not for F"+'. Moreover, in the point M n S'Q = {(U', U"+') I U' = . . . = U" = 0, U"+' = 
the F's are well defined and the null value of F"+' is obtained by continuity of the 
restriction of F"+' to M. 

The Hamiltonian W = D,.(E,) turns out to be 

where g" is the inverse matrix of g,. For obtaining W we have made use of 
g*pg. I ' I  =g-.oiuJ(2- , . + l ) 2  

.Le. :--,:-- ,,.a, r1,ryrrcs 

consequently the image N of U"+' = 1 is given by the hypersurface represented by the 
equation 

tgvpgi+  v + u  =o. 
The Hamiltonian vector field rH reads 

aW a am a aw a aW a 
JP,  aq' a u  a t  aqk  apk at  a u  

r ---+_--_I-__ 
H- 

where 

where we have used the notation p 2  = g"pcpj and W = V +  U. 

of the above partial derivatives. We obtain 
The expression of the restriction rHIN E E( N )  is obtained by taking the i,-pull-back 
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and consequently rMiN becomes 

2 a t  ' a t  au 
ki a a 1 agg d v )  Jik (1 Jgq 
pi7+-- -7p9j+- -- --p9.+- - 

aq a t  ( 2 a q  allk 
that is rHIN=rLlN with W ' = H + u  defined by 

W'=ig"(q, t)pg,+ V(q, t )+u.  

Finally, rHIN determines in T*Q x 88 the vector field 

whose integral curves satisfy 

that represent the equations of the usual time-dependent dynamics. 
Concerning the singularities of T,, in T*Q,  the following points summarize some 

of the main characteristics: 
(i) Since L is cubic, the momenta pk and U are quadratic functions of the velocities 

U". Because of this the diffeomorphic character of DL is local. 
(ii) More concretely the points (U*, U"") and ( -uk ,  4- U"+') have the same image 

under 4. This means that in every point (4, I )  E Q' the tangent space T(, , ,Q'  is divided 
in two regions {U*, U''+' >2}  and [U', u"+l<2} which give the same image under D, 
and have the singularity S;,,,  (i.e. u""=2) as common boundary. 

(iii) The definition of U shows that in every point (q , t )  E Q' the momentum U is 
Dounaeo OY me poieniiai, U s - V (  q*, i), ihe poinis ( pk, ii j such ihai U -i V = O corres- 
ponding to the boundary of the phase space. Every one of the two regions in T , , , ) Q  
can be foliated by the family of hyperplanes U"+' = k where k is a constant. The image 
in T*Q by DL is the family of parabolic-like submanifolds (f) g"ppip, + (2 - k)'( V+ U )  = 
0. When k takes the value k = 2 the submanifold collapse the pI = . . . =p. = 0 and when 
we take the asymptotic limit k + -m we obtain U + V = 0. That is, the phase space for 

inequality U + V < 0 with the points p, = . . . =p. = 0 excluded. Note that in this region 
the square roots appearing in the coordinate expression of rH are well defined. 

In sum, the singularities of rH in T*Q' are direct consequence of the cubic character 
of L (quadratic for D,) and they correspond to those points where the (n-dimensional) 
kinetic energy vanishes, that is, p ,  = . . . = p .  = 0 and U + V =  0. Nevertheless, it must 

in the whole N. 
We conclude this section by considering the relation of this approach with the 

multisymplectic formalism. 
An alternative geometric description of the time-dependent systems can be obtained 

as a very special case of the multisymplectic formalism [11-15] developed for field 

L:/'a+W a map & : J ' a + A : ( E )  (here J'a is the 1-jet bundle of m and A : ( E )  
denotes the subbundle of h"(E) of those of m-forms that give zero when two of their 
arguments are Ir-vertical vector fields) and using it one can go to the dual and construct 
a geometric Hamiltonian formalism for field theories. The point is to consider R as 
the basic parameter space (i.e. M = R) and the trivial bundle m :  Q x W -* R as the 

.~ ~ 1~ I *~ ~ ..~ ~ 

r, is Q' j (  @" -io;"; - \,) which is ;he o i i ~ i i  o: T*Q' defined 'oy 

La --+-A +Lnr +he.. in T*Q'h ..t nnt I- . ~ whioh i o  ..mil AnGlnA 
Y 1  ..YL*" L l l P L  LL'ZJ P L l  ".Lq.ULYL.LLC" L Y .  1 I.. y.....Y..H,N ..... -.. ,..,.* "II..LC" 

e:-m..l"-:+:ae CA- r 

thearies. S!agizg -ith 8 buzd!e ::: E - .x, dim .r = E, Ex ran defir?. ferevery f%!ctinn 
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fundamental bundle of the approach. Then J ’ r  = TQ x W and the map f i L  becomes 
&: T Q x R +  T * Q ,  (q’, t, u ’ ) + ( q ’ ,  1, aL/Ju’, -EL) .  So, in this formalism the funda- 
mental map is 6L and the usual time-dependent Legendre transformation DL (that is 
called ‘restricted’ Legendre transformation) is obtained as the composite map UO&. 

Let L be a time-dependent regular Lagrangian, then DL is an imbedding of TQ x R 
into T*Q’ and the relation between the extended Legendre transformation Constmcted 
over L(L) and the multisymplectic formalism constructed over L can be summarized 
in the following diagram of Legendre maps, 

D L  
T ( Q X R ) - -  

1 1  
TQxI 

Since DL is not bundle morphism form p to U, this diagram is not commutative (i.e. 
uoDL#DLop)  but D L ( M ) = & ( T Q x R )  and therefore v o Q l M = D L 0 p l M .  

4. Final comments 

The properties of L(L) given above in section 2 have been supplemented with an 
appropriate (extended) Hamiltonian formalism. Moreover, one interesting property is 
that the (extended) Lagrangian L(L) leads not only to its own Hamiltonian kl but also 
(indirectly) to W’. These two extended Hamiltonians, W and W’, represent two different 
ways of approaching the extended theory of Hamiltonian systems. Both functions are 
defined in the cotangent bundle T*Q‘ and consequently, both must be considered as 
‘time-independent’ Hamiltonians. Nevertheless they lead to two Hamiltonian formal- 
isms characterized by different properties: 

( a )  W’ (that represents [7-101 the usual Hamiltonian of the extended formalism) 
can be directly defined in T*Q‘ by just pulling back H and adding U. 

( b )  W arises from the extended Lagrangian L( L )  by the use of the extended Legendre 
Transformation. 

( c )  The dynamics defined by W‘ is given by a v-projectable vector field; thus we 
recover the usual time-dependent formalism by projecting its Hamiltonian vector field 
rk on T*QxR.  

( d )  The dynamics defined by W is not u-projectable; thus the usual time-dependent 
formalism is recovered (as was the case for the Lagrangian L) not by projection but 
for restriction (vector fields) or pull-back (forms). 

Finally, notice also that W’ is linear in U and therefore its Legendre transformation 
D;l: T*Q’+ TQ’ presents problems. In fact the equation W ’ = O  can be considered 
[7,10] as the Hamiltonian constraint determined in T*Q‘ by the extended 
‘homogeneous Lagrangian’ Lh of L. The extended Hamiltonian H has also some unusual 
characteristics as consequence of its non-polynomical character (i.e. it contains a square 
root) but its Legendre transformation DH: T*Q’+ TQ’ can be studied as a h a 1  
diffeomorphism and the Lagrangian k(L) can be recovered by 

k(L) = DH.{i(r,&,}-DH.(W). 
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